Expansion sélective de requêtes par apprentissage
نویسندگان
چکیده
Query expansion (QE) improves the retrieval quality in average, even though it can dramatically decrease performance for certain queries. This observation drives the trend to suggest selective approaches that aim at choosing the best function to apply for each query. Most of selective approaches use a learning process on past query features and results. This paper presents a new selective QE method that relies on query difficulty predictors. The method combines statistically and linguistically based predictors. The QE method is learned by a SVM. We demonstrate the efficiency of the proposed method on a number of standard TREC benchmarks. The supervised learning models have performed the query classification with more than 90% accuracy on the test collection. Our approach improves MAP by more than 11%, compared to the non selective methods. MOTS-CLÉS : Recherche sélective d’information, Prédicteurs de difficulté, Difficulté de requête, Expansion de requête, Apprentissage.
منابع مشابه
Expansion de requêtes par apprentissage
We propose in this paper a learning query expansion approach using association rules. The query expansion problem is modeled as a supervised classification problem which aims at identifying the appropriate set of association rules to expand a given query. A training data set is generated using a GA based exploring algorithm of the association rules space. Classification is made by the method of...
متن کاملExpansion de requêtes par apprentissage automatique dans un assistant pour la recherche d'information
Tools available to search information on the Web have a general approach, ignoring a user’s characteristics, and this limits the quality of the results that they may provide. The AIRA system presented here uses document references gathered by the user to build a profile to describe him, and it uses this profile to interpret and filter the results retrieved by Web search engines. In this article...
متن کاملApprentissage par renforcement pour les processus décisionnels de Markov partiellement observés Apprendre une extension sélective du passé
We present a new algorithm that extends the Reinforcement Learning framework to Partially Observed Markov Decision Processes (POMDP). The main idea of our method is to build a state extension, called exhaustive observable, which allow us to define a next processus that is Markovian. We bring the proof that solving this new process, to which classical RL methods can be applied, brings an optimal...
متن کاملExtension de requêtes par relations morphologiques acquises automatiquement
Information retrieval systems (IRS) usually suffer from a low ability to recognize a same idea or concept that is expressed in different forms. A way of improving these systems is to take into account morphological variations. In this paper, we propose a simple method to recognize these variations that are further used so as to enrich queries. In comparison with already published methods, this ...
متن کاملAnalyse formelle de concepts pour le routage des requêtes dans les systèmes pair-à-pair
Les systèmes pair-à-pair (P2P) ont remporté ces dernières années un succès rapide auprès du grand public et des professionnels car ils offrent la possibilité aux utilisateurs de partager et d’accéder à des ressources diverses, distribuées à large échelle. De nombreuses recherches concernant la sélection des meilleurs pairs contenant les données appropriées à une requête, ont émergé et constitue...
متن کامل